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Periodic solutions of heat conduction equations with boundary conditions of the 
relay kind are found for a finite interval, and the behavior of such solutions at 

unlimited time increase is analyzed. Periodic solutions of heat conduction equ- 

ations with nonlinear boundary conditions were considered in [ 1 - 4, lo], while 

in [5. S] periodic solutions of nonhomogeneous heat conduction equations with 
their right-hand sides nonlinear with respect to the unknown functions are pres- 
ented, and the asymptotic behavior of related initial problems is analyzed. 

Solutions of this kind define self-oscillating processes occurring in various bran- 
ches of hydrodynamics (theory of filtration and diffusion [3 - 61). 

1, The problem reduces to finding the periodic solution of equation 

all aaU __ .~. az-- 
at ax2 

in the finite region -1 < x < 0 with boundary conditions 

(1.1) 

au (- 1, t) 

i 

h,u (- I, t) 1- Ql for n(-J,L)<u*: 

ax - h+ (- 1, t) $- ‘/z for U(--I,t)>lr,* 
(1.2) 

(CL* > fL**, hl > 0, 112 > 0, q1 > 1/l) 
U (0, t) 7 0 

We set u (---I, t) = U*at t = T, and u (----I, t) =- uk* at t = T, with u == 

= u1 (x, t) for 0 < t < T, and IL = 11s (5, t) for Tr < t < T, and seek the 
solution of this problem in the form of series 
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f i ck exp (- hr(Ft) sin ak,x 
k=l 

u,(x,~) = + + 2 Dkexp [--hrz2(t - Tl)l sin aktz 

k=l 

where hki (i = 1) 2) are the roots of equations 

tg _= _lhki hk$ 
a hi a 
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(1.3) 

(1.4) 

The inequalities 

‘/,n (2k - 1) < akil < dt (k = 1, 2, . ..) 

are valid, and c$& ---f ‘12n (2k - 1) when k -+ 00 . 
The coefficients Ck and D k (k = 1, 2, . . .) are determined by the conditions of 

continuity of solution u1 (IC, T,) = uq (5, I’,), U? (5, 2’) = ZJ~ (5, 0). From (1.3) 
we obtain the equalities 

CO 

* X + 2 ck eXP (- hk,2T1 
k=l 

00 

x+ 2 &exp 
k=l 

Constants T, and T are the smallest roots of equations u (-l, T,) z U*V 

U (-4, T) = U**.. By virtue of (1.3) these equations become 

-___; rlll 
1 + hll 

Ck tZ?Xp (- kk,2Tl) sin ak,l = U.+ (W 

k=l 

4 --- 
1 + h2l 

2: Dk eXp [ - kk12 (T - Tl)] Sin +Q! = U,, 
k=l 

We in traduce notation 

B= $k, = =P (-- hk,2Tl) (1.7) 

rk, = exp [hk?(T--l)lY Ah. = Pk$k, Bk =Tk,Dk 

r, 

m 

Dk SinCQ,X = Blv + 2 Ak Sinak,x (1.8) 
k=l k=l 

02 co 

x ck Sin ak,x = - BX + 2 8k Sir1 akzx 

k=l k=l 

The coefficients Dk and CR are found from (l-8), respectively, in terms of A h and 

Equations (1.5) reduce then to 

Bk 
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where the following notation is used: 
(i.LO) 

Obviously lim &$mz = 0 (IQ = q + CQ). After some malformations (1.9) reduces 

to an infinite system of linear equat’ions defitiing the coefficients Cm and D, (na = 

= 1, z, . ..) 

Dm=fim+ 5 @j,nPj (iAl) 

where i=l j==l 
m 

(1.12) 

It is evident from (1.10) that the series appearing in the expressions for p,,, and 6, 
are convergent, and pm + Q and 6, + 0 when m -+ OO- From (1.4) follows the 

convergence of series pj,, and @j,m, , also 

i I Cli,m I and i 1 fij,m 1 
i==l +=I 

Hence, if ITa (b - h# h,-s~-” is sufficiently small for the inequality 

5 fpj,m1<1-% i i@j,rnjG1-- fo<e<*) 
j=1 j=1 

to be satisfied, the infinite system of linear equations (1.11) is completely regular, and 
it is possible KO determine coefficients c, and D, by the method of successive appro- 

ximations FJ. Constants T1 and T are found from Eqs. (1.6). Similar results were 
obtained for an infinite region in [S] by a somewhat different procedure, 

7 
%n Leer ik, --.= h, := h.Equation (1.4) now becomes 
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C, and Dh the following expressions: 

Tk-l 1 - B, 2 
c, = 

sin akl 
c 
k 1 -&*li, ’ 

Dk=e 
k I- &rk ’ ‘k = 7 (ql- pa) (2.2) 

If h = 0, then 0, = exp [ - akaazTl], Tk = exp [- ‘kzu2 (T - T,)] 

akl = l/n (2k - i), sin 2akl = 0 (2.3) 
The conditions of existence of roots T1 and T of these equations (C, sin a,$ > 0 and 
Dk sin ah1 < 0) 

01 
--<u**< u*<-& 1 +ti1 (2.4) 

follow from formulas (2.2) and (1.3). 
The patterns of functions o = o (T1) and 6 = 6 (Q for the cases of h- 0 and hl 

= 4 are shown in Fig. 1 (a) and (b) respectively, on the assumption that along each of 
these curves T = bT,. Curves 1, 2 and 3 relate to b = 4, 2 and “i3 respectively. Here 

6’ 6’ a2 q1l 
==2q-_p 6= 2(qa-q1)l ’ ZI = 21 TI, 6‘ = - u* - 1 + ,ll 

It is seen from formulas (2.2) and (1.6) that with increasing T1 the values o decrease, 

while 19 increase. Clearly, unique 

values of T, correspond to any II** and 

U. which satisfy inequalities (2.4). 
A solution of the problem of periodic 

modes of one-dimensional distributed 
system of temperature control of a fur- 
nace was given in [l] together with 

the analysis of stability of such modes. 
This problem reduces to solving Eq. 
(1.1) with conditions (1.2), where 
L (- Z< LX < 0) is substituted for 
-1 and h, = 11, = 0 is assumed. 

3. Let us now examine the asymp- 
totic behavior of the solution of Eq. 

(1.1) with conditions (1.2). in which 
h, = h, = h is assumed, for t -+ 

-+oo and initial condition 

U (X, 0) = rp (LX) (3-l) 

where cp (2) is a function satisfying the Dirichlet condition in the interval --I < IZ: < 

GO. 
The solution of this problem is defined by formulas (similar to those derived in [S]) 
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j Pm)<t< +j T(‘)-tTii+‘) (i=O,2,2,3 ,.,. ), z+)=tt (3.2) 
1=0 

Uc+l) (x, t) = - 1 yh, + 5 Dt+‘)exp (-- hk2 (t - i T(j) - Tvtl))i sinolkj. 
k=l j=o 

i T(j) + Tpf’) < t ,( i $“W _+ tJ’ti+l, (i = 0, 1, 2, 3, . ..) 

e-0 I=0 

where 

cf’ = 

Cfiil) zzz _I pk + ypL),w 

p,(i) = CXX; [- hraTl(i)], 

(i = 1, 2, 3 . ..) 

y,(i) = exp [ - hk2 (T(i) - Tl(i))] 
(3.3) 

For the sake of definiteness we assume that at the initial instant the upper inequality 
of the first of conditions (1.4) applies. 

If h = 0;then @ii’ = (@) @k-l)Pand @= {~))(2~-1)*, and it can be shown, as was 

done in [6] in the analysis of another problem, that with condition 

y,(A) Y< I(*, 5;.100, 6.<I(:, 

satisfied, pf”“) and ?‘iitl’ may in effect be determined from equations 

Pli+i) = pyj + n fgji+l) (-$fQ _+ ($itl))S), rytl) = Q$o’ $- 

+ B (,;jiil) (5: 1) (Jl )!’ /. (yii”‘)“> (3.4) 

(provided that B,Pj and ylPJf are sufficiently small for considerable i) 
Conditions 0 < @’ < 4 and t’J < rp) < 1 yield 

6 > e,, 3 -( -- ox, 3 - 6 < - fl, A -<o, R < 0 

It follows from (3.4) that fi,(i) and TIci) are bounded monotonic sequences which, acco- 

rding to the theory of Weierstrass have fil and rl as their limits. Substituting these 

limits into formulas (3.3). we find that these reduce to (2.2). Thus solution (3.2) vir- 
tually becomes the solution of th.e periodic problem (1.3) in which use is made of (2.3). 

l-et Row h + 0, In this case /$:’ = ($~‘)+ and #’ = ($)yk, where pk L- (xk /x1)“. 
More general equations may be substituted for formulas (3.4). Let us consider the case 
in which these are of the form 
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&+I) = 0, [ 1 - ($)P’l f (rf’pyp], (#fl) =Wj[f-(yp)‘LS] 
y% 

“,=-vl+f)p 
V.7 

%= -vl+t). vk- - - ek sin zk#!, s=3 

(i+ll 
Formulas for by+l) are derived from corresnonding formulas for aj by substituting 
(5 - yJl for (vl f s)-l , f,y’) for r:’ and ~7) for p’;‘) . 

Formulas (3.5) imply the following inequalities: 
#+l) < 0, qtl’ < () 

(i = 1,2,3) 

Pmin < P?+l) < /Lax = Pl”‘, “fmin < Yiitl) < Tmax = YP’ 

We must obviously have 0 < $’ < 1 and 0 < py’ < 1 hence conditions that 

0 < 0 < v17 -vl < fi < 0 and CI - 6 < vl. 

With the use of (3.5) we construct the difference 

Using the mean value theorem we define the difference af”) - ap’ as 

n(,?) - .F) = {o,p,&~‘-’ [ 1 - Qp)“2] + Cj)3~3&kl} ($ - $1)) - (3.7) 
- (&$2q”“2-1 (r:i-l))&L’ (;g’ 

- PY’) 

where ! and 6 are certain mean values of ?‘I and q is a certain mean value of PI. 
Similar formulas can be written for the remaining differences appearing in the expr- 

(i+l) ession (3.6), as well as for the terms of formula for the difference y1 - 7:’ similar 
to (3.6), and which can be derived from (3.5). These formulas make it possible to ob- 
tain linear expressions for the differences @+l) T pr) and rf”) - @in terms of 
?$’ _ rf-‘), a?’ _ p:-‘) and pr+‘) _ ~2) r(L) _ r(i-l) , respectively, 

p(:+l) _ pt’ = K (@ _ Q-1;) ; L ($ _ @l’) (3.8) 
#+l) _ #’ = ;\f (py’ _ py’) + jj,r ($ _ p’) 

K = _+_ (qp2 (EE”,-l$’ - jpi-1 (@)P1} [ 1 - @~‘)P”?] + 
1 

+ (gJ p {&klr$(i) - hk-1 (P(Q) 
3 s 1 1 P 5)) 

L=T 
{ _ @k-l pi” + v&-l (@‘)‘“.j ($l’)P% 

E = 1 _ &+l) - @,~.,q$kl {I - ($)r*: [I - (@)lL*]) - 

- 03~3wLJ-1 [ 1 - (y”‘) 1 iL 31 

where E, 5, A and 6 are mean values of rl; 9, V, ‘II) and 6 are the mean values of 
p1. Expressions for Mand N are derived from the formulas for K and L with the use 

of above substitutions. 
Estimates 

IKI<a, ILI<cj, IMI<r, INI< 

yield inequalities applicable to system (3.8) for i > Ic, where k is a certain constant 
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where 
++ Os&~$&nax (1 - p&i) (1 - ?Ei*) - ~~~~$LiPrnax (I mc B&Y?)1 

p--y1 
(TmaxPInax~~2(1 + P~3 (3.1Oj 

F = 1 - cozrgin (1 - P&,> - ma’i$fin - 

- 02~~p~~~ {f - Tg,, (I - Pgi*)> - 03PSPg’;: (I - Ygax) 

and ‘l’ and 6 are defined by similar expressions. In this case the inequality F ‘2 0, 
where F is defined by formula (3.10), must be satisfied. 

Multiplying the first of inequalities (3.9) by E and the second by q, where g and 11 

are certain unknown, a priori positive numbers, and adding the two products, we obtain 

q 1 yf+l) - yp ( + (5 - rq) 1 pf+l) - pj” I < 

< (a[ + &J) ( $Q - y-p 1 + p;; / pp - pv-1) / (3.11) 

We denote 5 = c - ?‘T and seek the numbers E and ‘1 as the solution of the system 
of homogeneous linear equations 

aE + 6?J = 3Lth [jg =: h5 := h. (E - hq) (3.12) 

Inequality (3.11) now becomes 

7 1 ypu) - r’,i’/ + p 1 $ji+l) - (31’) 1 < p’. (7 ( ry - q-0 1 -j- 

1_ j 1 pp - q-1) I > (3.13) 

If the roots g and q of this system of equations could be selected so that 

r“,~o,rl>0,5)0,o<h(l h/ 

then the numbers cp’;i) and rjr:‘) could be considered as elements :,,ci) = {@F), ‘t@) } 

of space 1i2j [9] of range p (,,.i+i, J,i) :_ 1 5 (F;+O _ pf) ) + / q (@ti) _ yf)). Let US 

assume this to be possible. From (3.13) then follows that p (,Li+l, si) < ibf, (-(i, j-1). 
We further obtain inequality 

p (;A m, ., m+cl) ‘Y ,_ Lgb {’ (.Tk, z.k-1) 

1. e. , p (xm, P-+q) - p 0 for /il. -- > X, q > 0. 

Hence sequence {xi} is convergent in itself, and by virtue of completeness of space 
@’ there exists an element .z’- = {@r, q*(r) E ,‘$’ which is the limit of this sequ- 

ence. After substitution of [jf’ and $) for p k and rk reSpeCtiVely, into fOrmhS 

(3.2) and (3.3) these again virtually become (2.2) and (1.3). 

Let us prove that it is possible to find such j, 11, ; and h which satisfy the inequalities 

k>O, n>O, 5>Oand u<h<l. 

The system of Eqs. (3.12) is linear and homogeneous. For the existence of a nontriv- 

ial solution of this system its determinant must be zero, and this yields for the determ- 

ination of 1 a quadratic equation whose roots are 

h = ljz {b + 6 -j- ~7 * 1/@ + 8 + a@ - 4BbJ (Ai < AZ) 

It is readily seen that both roots are real am positive numbers (since CL. (3, :’ and B are 

positive). If condition 
1’1 -! 0 c “y - [Jlh < 1 (3.14) 
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is satisfied, both roots are smaller than unity. 
We note that, when considering Eqs. (3.4) for the case of Ii = 0, the relevant con- 

dition is of the form ay < 1. Assuming q > 0, we further obtain from Eqs. (3.12) that 
5 j 0 and E = (h - 8) ~a-’ > 0. This means that h, < B and & > 6. Bearing this 
in mind, we set h = & and 5 = (h, - 8) rF~-l. Condition (3.13) in which 0 < h < i 

is now satisfied. 

It can be proved by the method of consecutive approximations that for sufficiently 

small @)and rf”’ the increme nts resulting from the substitution of shortened equations 

for Eqs. (3.5) (S -00) also tend to limits. The limits to which solutions of exact equ- 

ations tend are unique. 

Thus at the limit at t -+ 00 with conditions cp (-_I) < u*, 0 < o <vl, -yl < 

< 6 < 0, CJ - 6 < v1 and F > 0, where F is defined by formula (3. lo), and the 
inequality (3.14) satisfied the solution n (z, t) of the considered problem tends to the 

periodic solution of the related problem. 
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